Nadel–Nakano vanishing theorems of vector bundles with singular Hermitian metrics

نویسندگان

چکیده

Nous étudions une métrique hermitienne singulière d’un fibré vectoriel. Premièrement, nous montrons que le faisceau de sections holomorphes localement carrées et vectoriel avec singulière, qui est un analogue rang supérieur d’idéaux multiplicateurs, cohérent sous certaines hypothèses. Deuxièmement, prouvons théorème d’annulation type Nadel–Nakano vecteurs n’utilisons pas technique d’approximation d’une singulière. appliquons ces théorèmes à induite par des gros, obtenons généralisation du Griffiths. Enfin, d’Ohsawa.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vanishing theorems for ample vector bundles

Since the seminal paper published by P.A. Griffiths in 1969 [7], a whole series of vanishing theorems have been established for the Dolbeault cohomology of ample vector bundles on smooth projective varieties, mainly due to the efforts of J. Le Potier, M. Schneider, A. Sommese, J-P. Demailly, L. Ein and R. Lazarsfeld, the author, and more recently W. Nahm [2, 5, 11, 15, 16, 18, 19, 21]. This abu...

متن کامل

Canonical singular hermitian metrics on relative canonical bundles

We introduce a new class of canonical AZD’s (called the supercanonical AZD’s) on the canonical bundles of smooth projective varieties with pseudoeffective canonical classes. We study the variation of the supercanonical AZD ĥcan under projective deformations and give a new proof of the invariance of plurigenera. This paper is a continuation of [Ts5]. MSC: 14J15,14J40, 32J18

متن کامل

Vanishing theorems on Hermitian manifolds

We prove the vanishing of the Dolbeault cohomology groups on Hermitian manifolds with ddc-harmonic Kähler form and positive (1, 1)-part of the Ricci form of the Bismut connection. This implies the vanishing of the Dolbeault cohomology groups on complex surfaces which admit a conformal class of Hermitian metrics, such that the Ricci tensor of the canonical Weyl structure is positive. As a coroll...

متن کامل

Effective vanishing theorems for ample and globally generated vector bundles

By proving an integral formula of the curvature tensor of E⊗detE, we observe that the curvature of E⊗detE is very similar to that of a line bundle and obtain certain new Kodaira-Akizuki-Nakano type vanishing theorems for vector bundles. As special cases, we deduce vanishing theorems for ample, nef and globally generated vector bundles by analytic method instead of the Leray-Borel-Le Potier spec...

متن کامل

Hermitian-einstein Metrics for Vector Bundles on Complete Kähler Manifolds

In this paper, we prove the existence of Hermitian-Einstein metrics for holomorphic vector bundles on a class of complete Kähler manifolds which include Hermitian symmetric spaces of noncompact type without Euclidean factor, strictly pseudoconvex domains with Bergman metrics and the universal cover of Gromov hyperbolic manifolds etc. We also solve the Dirichlet problem at infinity for the Hermi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de la Faculté des Sciences de Toulouse

سال: 2021

ISSN: ['0240-2963', '2258-7519']

DOI: https://doi.org/10.5802/afst.1666